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ABSTRACT

A 4.55 microsecond, 15 Joule pulsed C02 laser was used to illuminate a copper

target. Bulk plasma was found to be emitted normally to the target surface independent

of the laser angle of incidence over the range of 45° ± 150. Material ejected from a
copper target was allowed to deposit onto polished type 304 stainless steel surfaces. The
ejected material deposited in concentric 'rings' in many places. The mechanism for this

is unknown.
Polished type 304 stainless steel surfaces were coated with one to ten micron copper

films and shot with the laser. Damage to the films indicate that the damage mechanism

may simply be joule heating from the arc current. This lead to a procedure for calcu-
lating that arc current. The arc lifetime is n .-essary but still unknown. No correlation

was found between unipolar arc pit diameter and depth.

Investigations into the role of surface tension on the iynamics of the molten surface
lead to a comparison between unipolar arcing and atc welding. Much of the physics

V known about arc welding is qualitatively applied to ucscribe the surface dynamics of

molten metal produced by unipolar arcing.
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I. INTRODUCTION

In the search for an almost infinite and clean energy source mankind has looked
towards nuclear fusion. In this endeavor the understanding of the properties of plasmas

is a necessary undertaking. Since we are unable to produce machines of infinite size,
we must pay particular attention to the interactions between the plasma and the surfaces

of the machines used to contain it.

The plasma-surface interaction occurs primarily through the following erosion

processes:

* Sputtering

* Unipolar Arcing

* Heat pulses

* Gases which implant into the surface can generate chemical erosion, embrittlement
and blistering.

These processes are of concern due to their limiting the life of equipment components

and their resultant introduction of impurities into the plasma. Of these processes it is

widely believed that Unipolar Arcing is dominant.

Most research into Unipolar Arcing has thus far investigated only the plasma above

the surface. This thesis starts an investigation of the dynamics of the surface itself. It

begins with experiments to determine if the bulk emission of material has any directional
dependance. The results of these experiments indicate that not only is there directional

dependance but there is also more structure to the ejected material than previously

thought.

Thin films are used for two purposes: to see how the same arc interacts with two
different materials and to find if there is any correlation between pit depth and diameter.

It was found that the amount of damage may be dependant upon the material's melting

and boiling points. This also lead to a method for calculating the arc current and to the

role of surface tension. Investigation into the role of the surface tension lead to the re-

alization of the similarity between Unipolar Arcing and the phy sics of arc welding. This

relationship is exploited in Chapter V which provides a preliminary theory for the sur-

face dynamics. No correlation was found between pit depth and diameter, however

these experiments indicate that, for the parameters used, the maximum pit depth is be-



tween 5.5 and 10 microns. In all this research the Unipolar Arcs are generated by a

plasma which itself is produced by a C02 laser.



II. BACKGROUND AND THEORY

Ilow high energy laser pulses and plasmas interact with various material surfaces
has long been under study. Of particular interest has been how laser pulses damage a

target surface when the energy of the photons in those pulses is less than the energy

necessary for photo-ionization of the material. Presented here is one of the current

theories describing this process, it involves the process known as unipolar arcing.

A. BACKGROUND

Before going into the theories delving into unipolar arcing some background must

be given on plasmas and their interactions with surfaces. This section begins with a

definition of what a plasma is and mentions some of its properties. The Debye length

is derived and a brief description is given on how a plasma is produced by a pulse from

a C02 laser.

1. Definition of a plasma

In nature there are four states of matter, these are solid, liquid, gas and plasma.

These states represent increasing levels of disorder and require higher energy levels with

progress from one to the next. The solid is the state of lowest energy and consists of a

concentration of atoms or molecules bound together in a rigid lattice structure by their

mutual electrical attraction. As energy, heat, is added these atoms will vibrate more and

more strongly until they can no longer maintain their lattice structure. In this regime

the atoms can move about but their energy is not sufficient to fully overcome their mu-

tual attraction. This is the liquid phase. When more energy is added so that the atoms

can completely overcome their mutual electrical attraction they enter the gaseous state.

To form a plasma it is necessary to ionize a portion of this gas. That is, sufficient energy

must be given to at least one electron in an atom to free it from that atom. This results

in a gas composed of both neutral and charged particles. Chen [Ref. 1, p.3] defines a

plasma as

A plasma is a quasineutral gas of charged and neutral particles which exhibit col-
lective behavior.

The term 'quasineutral' simply means that the gas contains approximately equal con-

centrations of ions, n,, and electrons, it,, such that

3



nj ne, n )I

where n is called the plasma density. Collective behavior comes from the charged par-

ticles. These particles produce and are affected by electric and magnetic fields. Because

of this, elements of the plasma will exert forces on one another even at a considerable

distance. Thus they will act together, hence the term collective behavior.

Temperature is another property of a plasma. If it is in thermal equili" 'ium

then the temperature is related to the average kinetic energy of its particles by the

equation

Ea = 3kT. (2)

2

Here k is the Boltzmann constant

k = 1.38 x 1023 J/K (3)

and T is the absolute temperature in kelvins.

2. Debye shielding

Debye shielding refers to the ability of a plasma to shield out electric potentials

which are applied to it. When an electric field is applied to a plasma the electrons and

ions will drift in opposite directions in response to this field. The charge sepa'ration be-

tween the electrons and ions acts to counter the applied electric field until it is essentially

cancelled out. For instance if a positively charged ball is placed in the plasma it will

attract the electrons and repel the ions. The electrons will form a cloud of equal charge

around the ball thus effectively cancelling its electric field.

An approximate width of the charge separation caused by a potential, (D, can

be easily deduced if all of the motion is considered to be done by the electrons. The fact

that the ions are so much more massi',c: than the electrons makes this a good assump-

tion. The ions will then form a uniform background upon which the electron motion

takes place. The ion density will be the same locally as it is at a large distance, hence

n1 = noo {4)

Assuming that the potential is held at a fixed value, (D,, on a plane at x = 0, then (D(x)

is desired. Poisson's equation in one dimension is

4



oV14) = o  - -e(n-ne). {5)

dx
2

The Boltzmann relation for the density of electrons is

ne = noe k1, (6)

so that equation (5) becomes

-- 2 noekf? ,-l (7)

The solution to this equation is

lxi
(D(x) = (Doe )DS

where )D is the debye length and is defined as

D 2 (9)
tle

The debye length is a measure of the shielding distance. It is the distance over which the

potential is reduced to 1le of its maximum value.

3. Plasma generation by the C02 laser

In this research the -plasma was generated by a C02 laser. The laser sends an

electromagnetic pulse to the target. If the target is considered to be at x=0 and the

pulse travelling to the left on the x-axis, then the electric field of the incoming laser

pulse, E, is given by

El = Eo, sin(. +cot) (10)

where Eo1 = maximum amplitude of the E-field
A = laser wavelength
w = angular frequency
t = time.

For simplicity the target is assumed to be perfectly reflecting. The electric field of the

reflected pulse is then



Er = Eor sin( 2 ;x (ot+&) (12)

where c is a phase angle. Perfect reflection also provides that

E01 = Eor = E0. (13}

If the target is a perfect conductor, then the electric field at x = 0 parallel to its surface

must be zero. Thus & = 0. The superposition of these waves produces a standing wave

whose electric field is given by

E = 2E0 sin -y ) cos(cot) (14)

and whose intensity is

E2 = 4E 2 sin'2( ). (15)

Assuming that an initial electron concentration exists, then electrons above the surface

will oscillate in response to this electric field. Maximum oscillations will occur at the

maxima of the standing wave, i.e. at x = )./4, 3).,'4, etc.. The source of this initial

electron concentration is as yet unclear.

An actual target surface is not perfectly reflecting, thus some of the energy of

the laser pulse will be absorbed by that surface. As the target is heated neutral particles

adsorbed will be released. Oscillating electrons will collide with these neutrals ionizing

many of them. When they are ionized the neutrals release electrons which in turn os-

cillate and collide producing further ionizations. This process continues until the plasma

density rises to a point where the plasma frequency is equal to the laser frequency. The

laser will then be reflected by the plasma. The plasma frequency, cor, is given by

S= h e2  {16)

where e and m are the charge and mass of the electron. Thus the plasma density ob-

tained will be

2eon Iopn i- e2 
(17)

e



which for the C02 laser (Q = 10.6 micron) yields a critical plasma density of

-8 3n = 9.93 x 108cin

B. THE ROBSON-THONEMAN MODEL

In 1958 Robson and Thoneman [Ref. 2] observed what they described to be unipolar

arcing occurring on a mercury electrode in the presence of a high energy plasma. Their

explanation of this phenomenon follows.

Whenever a metal plate is exposed to a plasma it will collect both the positive ions

and the negative electrons. The electrons having much higher rand, m velocities than

the ions will initially collect on the plate more rapidly. An electrically isolated metal

plate will collect a negative charge and thus a negative potential. This negative potential

will repel electrons even as the now more positive potential of the plasma near the sur-

face attracts them. Only the electrons at the high end of their maxwellian distribution

will have sufficient energy to overcome these potentials and reach the plate. At equi-

librium this potential is known as the floating potential (Figure 1).

The negatively charged plate receives an ion current density of

il = niey { 19)

where n, = ion density
el = ion charge
, = mean velocity with which the ions reach the sheath boundry

(kTe)

il = ion mass
7"e = electron temperature
a = factor on the order of unity.

Given that the plate potential with respect to the plasma is V, then the electron current

density is

Je = neevee k T, {2 1)

7
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~S { ZHAT l11

Figure 1. Equilibrium Plasma-Surface Interaction Prior to Cathode Spot Forma-

tion.

where n, = electron density
ee = electron charge
v = mean random velocity of.the plasma electrons

J8/k Te
On!

in = electron mass.

In steady state the plate is at the floating potential, I, and the total current is

ji+je =O. (23)

Assuming that a--1I and e, = -- e, (i.e. singly charged ions) then we have

Ji=-e

nje1j -"r - T neee/ - e- k7,

I ;e (24)

ee h in

8
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This equation shows that given a sufficiently high electron temperature, T,, the floating

potential, V, will surpass that needed to sustain an arc. Such an arc current ofelectrons

from the plate to the plasma will lower the local potential between the plate and plasma
to the cathode fall potential of the arc, V. This lower potential will allow more electrons

from the high energy end of their maxwellian distribution to cross the sheath from the

plasma to the plate thus completing tile circuit (Figure 2). There is then a circulating
current which maintains the requirement that the total current to the plate be zero. The

circulating current is described by

e , e , e{ 2 5)

1, = A n e. ~ je kTr- - e'kT,(5

where A = plate area exposed to the plasma. Thus this is indeed a unipolar arc, an arc

which requires only one electrode and runs off the thermal energy of the plasma
electrons.

Robson and Thoneman tested their theory by creating a plasma in a vacuum tube

and then heating it with RF energy. In their experiments they found good evidence in

support of their theory and observed unipolar arcing taking place.

® ION 0 ELECTRON'

\\\, \ \
,( q, \ i

' it : .Vc<v,i~~~ 1,4 , , +

RETURN CU

Figure 2. Plasma-Surface Interaction During Unipolar Arcing.
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C. THE SCHWIRZKE MODEL

In 1980 Schwirzke [Ref. 3] expanded upon the Robson-Thoneman model, he con-

nected the unipolar arc phenomenon with the laser-target interaction. A Q-switched

neodymium laser was used in his experiments. Later research by Schwirzke found gen-

eral applicability to Tokamaks [Ref. 4] and the C02 TEA laser. A plasma in contact

with a surface will form a sheath with the floating potential given by

Vf- 2e e n z ,,* (26)

It was also stipulated that the sheath width is proportional to the Debye length

)D {27)
S47rne

Thus the electric field across this sheath and in a direction normal to the surface will be

given by

.- '=inkT In{ 27i [2SI vI\IrlA en 2,, 28)

Unipolar arcing develops if the sheath potential is high enough to sustain an arc. The

electric field is then intense enough to cause the emission of electrons from a surface spot

into the plasma. "The minimum requirement for the onset of arcing is that the sheath

potential is comparable to the ionization energy ... " [Ref. 3] of the material.

"For an arc to develop it is also necessary that the ion density increases in front of

the cathode spot in order that a larger electron current can flow into the plasma."[Ref.

31 This occurs when the electric field concentrates around protrusions or 'whiskers'

(Figure 3) causing increased ion bombardment and hence heating. The inceased local

heating causes increased desorption of surface gases, oils and metal evaporation. This

causes an increased concentratiei of neutrals in the sheath of which a small percentage

is ionized. The small percentage of ionized neutrals causes a drastic increase in the local

ion concentration. These new ions are then accelerated by the sheath potential back to

the surface causing further increases in surface temperature, vaporization and electron

emission from the hot cathode spot is the result. The locally increased ion concentration

above the cathode spot leads to a radial electric field (Figure 4) given by

10
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Figure 3. Local Electric Field Enhancement at a Whisker Tip.

Er e(_L)( L (29)

"This reduces the potential in a ring-like area surrounding the higher pressure region

above the arc spot. The sheath potential will be lowered there and more electrons from

the high energy tail of the Maxwellian distribution can reach the surface, thus closing

the current loop." [Ref. 3]

D. THIN FILMS

Thin films (Ref. 5] have been prepared for quite a long time. Thin film technology

generally refers to the deposition of layers by an atom by atom prccess as opposed to

layers formed by laying down relatively large particles. One of the most inportant aims

in making a thin film is generating continuous layers,: large particles may or may not

react together to form such layers. The basic techniques for the deposition of thin films

are:

* Electroplating

* Chemical Reduction

* Vacvm Evaporation

* Sputtering

11
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Figure 4. Schlirzke Unipolar Arc Model.

* Chemical Vapor Deposition

In the research reported in this thesis the vacuum evaporation method was used, The

method of thin film production by evaporation consists of four physical stages:

e conversion of the material to be deposited into a gaseous state;

* transport to the substrate;

* deposition onto the substrate;

* rearrangement or modifications of their binding as more material arrives.1Ref. 6]

Vacuurr evaporation requires a relatively clean vacuum in a range typically obtained

by a modern ion or diffusion pump system. In this vacuum a vapor source will develop

a rate of vaporization given by

N, 3.513 X 1022 aiPe molecules (30)

JX7T cll 2sec

12.



Where a, = evaporation coefficient (- I for a clean evaporant source)
Ae = element atomic weight of the vapor source
P, = vapor pressure of the vapor source
T = temperature.

How this vapor finally deposits onto the desired substrate is dependent upon the geom-

etry of the system, that is, it depends upon the geometry of the vapor source, the

substrate, and relative positions of the two. For example, using the oval dimple boat in

Figure 5 will give deposition profiles given in Figure 6, whereas using the coil in Figure

7 will give the deposition profiles shown in Figure 8 [Ref. 7].

S 190O$mm

~31.75 n

Figure 5. Oval Dimple Boat. [Ref. 7, p.271

13
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Figure 6. Oval Dimple Boat Evaporation Distribution Profiles. [Ref. 7, p.271

19.0S mm 3.10 mm
[ 72 2
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$TURNS

Figure 7. 3/8 inch I.D. X 6 Coil. [Ref. 7, p.110]
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E. THIN FILMS AND THE UNIPOLAR ARC

The purpose of this thesis is to investigate the dynamics of damage on the surface
caused by unipolar arcing. By gaining an understanding of these dynamics methods of

preventing damage may be sought after.
This being the first investigation dealing exclusively with the dynamics of the sur-

face, as opposed to the plasma over the surface, the experiments begin simply. While
the shape of the pit in the surface is as yet unknown, they appear to tunnel normal to
the surface. If the majority of them are indeed normal to the surlhce, then the gases they
eject will be ejected normally. This will occur regardless of the incident angle of the C02
laser pulse. The first set of experiments provide a preliminary investigation of this.

How are different materials affected by unipolar arcing? One method is to illumni-

nate different materials with the laser. While this will provide much data on the gencral
diflrences in their interactions, a more interesting experiment is how the same arc af-

fects two different materials. This the basis of the second set of experiments. In these
experiments a thin film of one material, copper, is placed over another, type 304 stainless

steel. This actually serves two purposes. The first is to observe differences in damage
between the two materials. While it is expected that the film will suffer more damage,
just how much more damage is the question. The second purpose is to find an estimate
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of the amount of heat generated during the arcing process. Where damage is restricted

to the film only, then knowing the material damaged and its volume allows calculation

of the heat input. Assuming this heat is provided by the arc current allows its calcu-

lation.

Several assumptions have been made in these experiments. Most have been inter-
spersed throughout this report and will be brought up as they are needed. The two most

fundamental assumptions are:

* the thin films made are of uniform thickness;

* the boundry between the different materials does not significantly affect the arcing.

Another of the unknowns involved in the study of the unipolar arc phenomenon is
the depth of the unipolar arc pits. Knowing the depth of these pits will allow measure-
ment of the actual amount of material ejected from the pit into the surrounding vacuum
and may shed further light onto the internal dynamics of the process of the pit forma-
tion. The final experiment attempts to determine a relationship between the diameter
of the unipolar arc pits and their depth. This is accomplished using thin films of varying
thicknesses on a surface which is hit by a high power pulse from a C02 laser. These
targets are then analyzed to determine the smallest diAmeter pits which penetrate

through to the substrate for each film thickness. This data is then to be used to deter-
mine a relationship between the size (diameter) of the pits and their depth.
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11. EQUIPMENT AND PROCEDURES

This research was designed to study the surface dynamics of the molten metal
produced by unipolar arcing and to find if there is a relationship between the diameter

of the unipolar arc pits and their depth. The equipment used and procedures followed

to accomplish this objective are described in the following sections.

A. EQUIPMENT
The equipment used in the conduct of the research described in this thesis can be

broken down into three categories: the Vapor Deposition System, the C02 Laser Sys-

tem, and the analysis equipment. The Vapor Deposition System includes all of the

equipment used to prepare the target: sander, polishing wheels, ultrasonic cleaner,

pure-air system, vapor degreaser, deposit thickness monitor, and the VEECO VE-401

automatic high vacuum evaporator. The C02 laser system includes all of the equipment
necessary to impinge a laser pulse onto the target: C02 laser, target chamber, energy

meter, and the optics. The analysis equipment includes all of the equipment used to an-

alyze the results: optical microscope, and the scanning electron microscope.

I. Vapor Deposition System

The vapor deposition systen consists of the equipment used to prepare the tar-
get. The equipments used to polish the target are the sander and polishing wheels. The

equipment used to clean the target were the ultrasonic cleaner, the pure-air system, and

the vapor degreaser. The film deposition was conducted using the VEECO VE-401 au-

tomatic high vacuum evaporator and the deposit thickness monitor.

a. Sander and Polishing Wheels
To produce a smooth surface for film deposition the target undenvent a

standard polishing procedure using 240, 320, 400 and 600 grit sandpaper. This was fol-

lowed by further polishing using the standard Buehler polisher with 1.0 micron and 0.05

micron Alumina (a powder suspended in an aqueous solution).

b. Ultrasonic Cleaning .Systen

The Sonicor ultrasonic system (model SC-101TH) shown in Figure 9 was

used to clean all of the targets.

c. Ptre-Air System

In order to clean all particulates and dust off of the surface of the targets a

clean environment is necessary. This clean environment was produced by the Model
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Figure 9. Ultrasonic System

T1M-48 pure air system made by the-Pure Air Corporation. This system filters out t1ll

0.5 micron and larger particles and then blows the clean air into a small work area ,(60

cm deep X 57 cm high X 117 cm wide).

d. Vapor Degreaser

This device consisted of a 1000 milliliter beaker, a target holder, a petri dish

and a hot plate. A mixture of acetone and ethyl alcohol is added and allowed to boil,

the distilled vapors then condense on the target surface and run off by gravity.

e. VEECO VE-401 Autonmatic High Vacuum Evaporator

The VEECO VE-401 automatic high vacuum evaporator [Ref. 81 is shown

in Figure 10. It consists of a vacuum system, pressure gauge controls and evaporator

equipment. The vacuum system is composed of

* mechanical pump capable of reducing the system pressure to approximately 10
microns;

* diffusion pump capable of lowering the system pressure to the vicinity of 10-' torr;

* cold trap utilizing liquid nitrogen to remove condensible gases and prevent oil va-
por from the diffusion pump from entering the bell jar.
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The pressure gauge controls consist of

* two standard thermocouple gauges capable of reading pressures from 1000 microns
of mercury to the region of 1 micron of mercury;

* one thermocouple indicator-controller used to 'Control the automatic functioning
of the vacuum system;

* one Bayard-Alpert type ionization gauge capable of reading pressures from
I x 10-1 torr to 2 x 10-9 torr.

The evaporator equipment consists of various transformers and connections necessary

to provide high current (up to 500 amperes) to the boat or filament used to hold and

melt the substance to be deposited.

f Deposit Thickness Monitor

The SLOAN DTM-2A deposit thickness monitor [Ref. 9] was used to

monitor the deposition process. The DTM-2A measures the mass of the deposit. The

mass is measured by evaluating the change in frequency of a resonating quartz crystal

as a deposit builds up on its surface.

The DTM-2A consists of a sensing unit, an operating unit and a connecting

cable. The sensing unit is a transistorized, crystal controlled oscillator housed in a vac-

uum tight package. The operating unit is an all solid state device whose principle display

of information is in the form of a precision meter movement but also utilizes an audio

amplifier and speaker principally for calibration purposes.

Before deposition the variable frequency oscillator is tuned so that the beat

frequency between it and the crystal oscillator is zero (it is here that the audio amplifier

and speaker are used in order to achieve more accuracy). After zero tuning the variable

frequency oscillator frequency is kept fixed. As soon as deposition begins the crystal

frequency changes and a difference frequency is heard. As the deposit thickness becomes

appreciable (30 Angstrom units of Aluminum) the meter will begin to indicate. As the

deposit thickness becomes greater the beat frequency will also rise according to the

equation

-=A AF (32)p

where T =deposit thickness in Angstroms
AF= beat frequency in hertz

p = bulk density of the depositing niaterial in gcn'3

A = a constant dependent upon the depositing material.
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2. C02 Laser System
In order to produce a high intensity laser pulse, shape it and direct it onto a

target under vacuum the following equipment was utilized: Lumonics C02 laser, various

optics, a target chamber, and an energy meter with its associated probe.

a. C02 Laser
Weston [Ref. 10] described the C02 laser in Figure 11 as follows:

"A Lumonics TE 822 HP high energy TEA pulsed laser was used as the
laser source. It is capable of producing 20 joules of output and has an adjustable
pulse width from 0.05 usec to 5.0 usec.'"This laser uses an optically active medium
of carbon dioxide, nitrogen, and helium, which is excited by a transverse electrical
discharge. A population inversion results from the discharge electrons colliding with
the C02 and N2 molecules. Since one of the N2 molecular upper vibrational levels
possesses an excitation energy which is approximately equal to that of the C02
molecule, the N2 serves to enhance the magnitude of the population inversion by
the efficient transfer of vibrational energy during collisions between the C02 and
N2 molecules. Thus, the N2 serves as reservoir of energy which directly influences
laser peak power and pulse length.

"Helium is used to obtain a well diffused electrical discharge. The He
also removes heat (generated by the electrical discharge) and lowers the gas mixture
temperature. This results in less depletion of the C02 upper vibrational level, and
the interaction of die C02 and He increases relaxation of the C02 lower vibrational
level. Therefore, the use of He allows the laser to be pumped at higher discharge
currents, which produces a larger population inversion and thus higher power. The
high voltage power supply and gases were cooled by a Flowrite (RPCX mod 387)
chill water unit with a flow rate of 25 gallons per hour at ..."[Ref. 10] 15 4- 5°C.

"The Lumonics laser with a multimode optic emits a 30 x 33 mm beam
of approximately rectangular shape. The pulse shape can be varied in time from
0.05 usec to 5.0 usec by adjusting the gas mixtures. For a variety of reasons, a
standard long pulse mixture, resulting in a 4.55 usec pulse was used .... " The
standard gas settings for long pulse are: 10 psig on the pressure gauges for C02,
N2, and He, 8 standard cubic feet per hour (SCFH) for C02 and N2, and 6 SCFI
for He. This provided a reasonable pulse shape with a good distribution of the laser
energy in time. The power density was varied by adjusting the voltage of the
capacitor discharge .... [Ref. 10]

b. Target Chamber

The target chamber is shown in Figure 12. As described by Wojtowich

[Ref I1} it is
"The VEECO 400 vacuum system ... is utilized in conjunction with the

C02 laser for research of plasma surface interactions at the Naval Postgraduate
School. The system is a modified vacuum deposition system which has been refitted
with a vacuum chamber. The vacuum pumping system consists of a mechanical
pump, a water cooled diffusion pump, and a liquid N2 cooled cold trap. The pres-
sure range of the chamber is from 1.0 atmosphere down to 10-1 atmospheres (atm).
Three different gauges are required to determine the pressure in different ranges.
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Figure 11. Lumonics TE-822HP C02 Laser

Pressures firom one atmosphere (760 torr) down to 0.005 atmosphere (3.8 torr) are
measured from a Matheson pressure gauge (model 63-5601) mounted on the top of
the chamber; this gauge contains a Bourdon tube and socket .... Pressures between
10-1 atmosphere (0.76 torr) and 10-6atmosphere (7.6 x 10ftorr) are measured by a
thermocouple gauge located below the chamber. Pressures between 10-6 atmosphere
(7.6 x 10-6 torr) and 10-1 atmosphere (5.5 x 10-6 torr) are measured by an ionization
gauge located above the diffusion pump."

There were four ports into the target chamber, two were of metal and one was a NaCI

window. The laser beam entered through the fourth port which was of ZnSe.

c. Energy Meter and Probe

'me energy meter and probe used were clearly described by lenson [Ref.

12].

"The energy output of the laser was measured using the Laser Precision
Corporation Model Rj-7100 energy meter with the Model Rjp-736 energy probe
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Figure 12. Target Chamber.

which is designed to detect laser pulses of wavelengths between 0.35 and 1 1.0
microns. The meter is capable of measuring the energy of a laser pulse of I nsec to
I msec duration, and total energy ranging from 10 uJ to 10 J.... The energy detected
at the probe is only a small percentage (0.13%) of the total energy of the laser pulse,
whose flux on the target is calculated from the reflectance and transmittance of the
ZnSe beam splitter, as well as the transmittances of the ZnSe focusing lens ..d
ZnSe window.

d. Optics

The optics used to direct and focus the laser light are as follows:

* one 7.62 cm diameter ZnSe beam splitter with 99.38% reflectance, 0.13%
transmittance, anid 0.49% absorption at an incidence angle of45 degrees;

* one 7.62 cm diameter ZnSe fbcusing lens with 98.5% transmittance, 0.26% ab-
sorption, and a 38 cm focal length;

" one 7.62 cm diameter ZnSe window with 98.0% transmittance.
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3. Analysis Equipment

In order to analyze the surface of the targets the flollowing equipments were

utilized: optical microscope and a scanning electron microscope (SEM).

a. Optical Microscope

Preliminary analysis of target damage and investigation of the concurrent

pitting was conducted using a Zeiss ICM 405 Inverted Camera Microscope (Figure 13)

with reflecting light. This microscope allowed viewing and photography of surfaces in

magnification powers of 50X, 1OX, 200X and 50OX.

Figure 13. ZEISS ICM 405 Inverted Camera Microscope

b. Scanning Electron Microscope

Final target analysis was conducted using the Stereoscan 500 Scanning

Electron Microscope [Ref. 131 which is capable of magnifications up to 280,000 X. Its

basic function is to construct an image which has a three-dimensional appearance from

the action of an electron beam scanning the surface. Under suitable conditions the re-
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solution o,"this instrument can be better than 4 nanometers with a depth of focus at least

300 times greater than that of a light microscope at the limit of resolution.

A basic diagram of the SEM is shown in Figure 14. The SEM is con-

structed of five main components, these are

* "Electron Gun produces a large, high intensity electron beam which is fitted into

* the Column which controls and shapes the beam into a size useable for scanning
microscopy.

* The Scanning System scans the beam over the sample in a television type raster.
The beam scanning over the sample releases electrons from it.

* The Electron Collector Assembly collects these electrons and converts them to an
image which can be viewed by the operator.

* Tie Control Electronics allows you to control the performance of items I to
4."[Ref. 131

The only other capability of the SEM which was used for this thesis was its

Elemental Analysis function.

"All samples will emit X-rays when struck by the electron beam. These
X-rays are characteristic of the element from which they are emitted. By the use of
special detectors sensitive to X-rays the sample may be analyzed for its constituent
elements. The results may be either a plot of the concemration of tile element
present, or the spatial distribution of a chosen element on the sample surface. Par-
ticles as small as 1 micron may be analyzed."[Ref. 13]

B. THE EXPERIMENTAL PROCEDURE

This section explains the methods used to calibrate the equipment, prepare the tar-

gets and conduct the shot.

1. Calibration

The only equipment item needing calibration by this researcher was the Deposit

Thickness Monitor (DTM-3). Its calibration for copper is described below.

Since no multiple beam interferometer was available, calibration for copper was

achieved by measuring the initial mass (0.3130 ± .0001 g) and surface area

(3.61 - .Icm2) of the crystal, then depositing to a beat frequency of 187.5 ± .25 kl-Iz. The

crystal mass was then again measured and found to be 0.3265 - .0001 g. The mass dif-

ference being .0135 g yields a film thickness of

T= massarea x p {33}

= 4.178.un
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.Measurements on photographs of the crystal's edge (see Figure 15) reveal a thickness

of

Dt~i.mm (34)

Taking the average value of these two results yields a thickness of

T= 4.S9pn (35)

Manipulation of equation (32) thus yiekls the constant for copper to be

p×T

AF (36)
= 1.952 ± .003

and so the equation for determination of the thickness of the copper deposits is

T(A) = 1.952 x , iz) t37)p(glcin )

with the density of copper being S.95gicm'. This equation is used throughout this thesis

as the sole source for the determination of the film thicknesses.

Figure 15. 50OX Photograph of the DTNI Crystal's Edge after Deposition.



2. Target Preparation

The following procedure was developed using standard microscope slides. Films
were deposited onto these slides using various preparation and depositio,, techniques

and then the film was analyzed. This analysis consisted of scrutiny under an optical

microscope and also the placement of a light source on one side while looking for light
leaks (holes) on the other. Correlation between these two methods of analysis yielded

the general characteristics of film defects to be easily discernable from pitting caused by
Unipolar Arcing. The techniques mentioned below yielded the best results, fewer than
10 significant defects over an approximate area of 5 cm2.

The target substrate was manufactured from one-half inch diameter type 304

stainless steel rod which was cut into one centimeter sections. One face of these cylin-
ders was polished to the extent obtainable with .05 micron Alumina using standard
polishing techniques.

In order to deposit a fine quality film it is necessary for the surface to be ex-
ceptionally clean and free of all loose particles and dust (most of these particles have a

much larger diameter than the thickness of the film). To obtain this necessary level of
cleanliness the targets were first cleaned ultrasonically in an acetone bath. Further

cleaning was done in a clean air environment produced by the Pure-Air system. In this

clean environment the targets were dipped into acetone and then into ethyl alcohol,

scrubbed with a standard drugstore variety toothbrush and dipped again. Since both the
acetone and the ethyl alcohol contain particulate impurities the targets were also sus-

pended above a boiling solution of acetone and ethyl alcohol in the Vapor Degreaser,

thus the targets were cleaned further by distilled acetone and ethyl alcohol which con-
densed onto their surfaces and ran off by gravity. All transport of the targets after being

in the Pure-Air system was conducted inside of a clean, sealed metallic box.
After cleaning the targets were placed inside of the VEECO VE-401 Automatic

High Vacuum Evaporator and allowed to outgas under high vacuum (approximately
6.0 x 10' nm Hg) for about one hour. The targets were placed 17 centimeters above
tie evaporation boat (hereafter simply referred to as boat). The DTM-3 oscillator was

placed at the same height as the targets and equidistant from the point directly above

the boat. The boat used was made of tungsten, it and its characteristics are shown in

Figure 4.
Before the 99.9% pure copper in the boat is heated a shield is placed over the

boat to prevent deposition of impurities onto either the targets or the DTM-3 Oscillator.

Current through the boat was slowly raised to 100 amperes. This raises the boat teln-
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perature to just above the melting point of the copper (1083 'C). After allowing all of

the copper to become molten the current was further raised to 130 amperes. One minute

more was allowed for the system to reach steady state and allow any impurities or re-

leased particles to settle. The shield was then removed allowing the vapors from the

molten copper to deposit onto the targets and the DTM-3 Oscillator. The deposition

was constantly monitored using the DrM-3 and when the desired change in frequency

(and thus thickness) was achieved the shield was inserted and the current reduced to

zero. A one hour cooldown under high vacuum (about 6.0 x 10' mm Hg) was allowed

before the target was removed. These films were then analyzed under the optical mi-

croscope and their quality noted.

The laser shot onto the target was conducted with the setup shown in Figure

16. The target was placed under a vacuum in the 10-S mmHg range and shot with a fo-

cused 4.55,tsec laser pulse.

Final analysis was conducted with the use of the SEM. The smallest pitting that

penetrated through to the stainless steel and the largest pitting which did not penetrate

was photographed as was their X-ray elemental analyses.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

This chapter reports the results of the experiments undertaken and gives an analysis
of their implications. The beginning describes the results of experiments to determine

the direction of emission of bulk material during the laser-target interaction. Structure
was found in this emitted material by studying how it deposited onto a highly polished
surface. This was followed by investigating damage to thin copper films on highly pol-

ished stainless steel targets. Damage to these films led to a method of calculation of the
arc current using basic thermodynamic principles. Finally, the results of experiments to

find a relation between the size of the pits and their depth is given.

A. INITIAL INVESTIGATIONS

This section reports the results of experiments conducted to determine the direction
of emission of bulk material during unipolar arcing. It also presents the results of de-
position of this material onto a highly polished stainless steel target.

1. Normal Emission of Bulk Material
The first part of this research involved study of the material ejected from the

surface by unipolar arcing. Specifically, this section deals with finding out if there is any
directional dependence to the emission of bulk material.

Unless acted upon by external forces, such as electric and magnetic fields, a
plasma, once produced, is expected to expand fairly uniformly to fill the vacuum and
finally to deposit onto the surfaces of the chamber. To get a rough idea of the bulk
distribution of the material ejected when the laser strikes the target the following exper-

iment was conducted. A hole was made in a piece of aluminum foil and the foil placed
normal to a copper target as shown in Figure 17. The hole was made to allow the laser
pulse to penetrate and normally strike the target. The experiment was placed in a vac-
uum of 2.0 x 10-4 mmHg and shot with the laser 60 times at 1 H-z. Average pulse energy
was 17.0 Joules. There was no visible copper deposited onto the foil.

Investigating further it was found that keeping the foil parallel to the target

surface but having the laser pulse come in at an angle (as in Figure 18) produced sig-

nificant deposition. The parameters for this shot were the same as before, the only ex-
ception being that the energy meter read an average pulse energy of 18.1 Joules. A

qualitative examination of the deposition showed that most of the deposition occurred

directly over the laser spot on the target. Different laser entrance angles produced the
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Figure 18. Diagram of second experiment to determine the directional dependence
of material emission from a copper target.: h = 1.7 + 0.2 cm.
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same results. These experiments inilicate that during the laser target interaction the bulk
of the material which is emitted is enitted normal to the target surface. It will be shown

later that this should be universal for unipolar arcing.

2. Deposition profile of ejected bulk material

To further investigate this ejected material the aluminum foil was replaced with
a highly polished type 304 stainless steel surface. The idea being that the ejected mate-

rial, whether it was metallic vapors, plasma or moltcn liquid, would adhere to the sur-

face. How it adhered would indicate the extent of the directionality and any structure

that may be present.

In the first experiment the system was placed under a vacuum of 4 x 10-1
mmHg. The laser target was then shot with 60 pulses at a frequency of 1 Hz. The av-

erage energy of each pulse was 17.1 Joules, and the distance between the copper target

and the steel surface, h, was 1.4 + 0.1 cm. Visual examination of the steel surface re-

vealed the same results as with the aluminum foil. There was significant copper depo-

sition normal to the laser spot of roughly the same size and shape (see Figure 19).
Beyond this deposition region there was some spotted deposits of copper with the rest

of the surface being covered with a blue film. This blue film indicates a deposition

thickness of 100 to 200 rianometers over the rest of the surface.

Examination under an optical microscope revealed several interesting phenom-

ena. Figure 20 reveals significant pitting occurring in the region of dense copper depo-

sition with the amount of pitting decreasing with the amount of deposition. This
indicates that a hot and dense plasma is being emitted normally from the target surfhce

and not expanding very rapidly in the radial direction.

Figure 21 and Figure 22 reveal an intriguing ring structure found at two places
on the edge of the region of dense deposition. This was also found in other shots to be

described later. A possible explanation will be given then.

Examination of the region outside of the dense deposition revealed circular
copper deposits (Figure 23). There are no pits in these deposits. They are circular and

appear to be fairly uniform. Each of these deposits are most likely caused by either the
emission of a jet of copper vapor from a single unipolar arc occurring on the laser target

surface or droplet formation (or some combination of the two).
Reducing the vacuum to 5.3 - 0.5 mmHg while leaving all of the other param-

eters essentially constant produced very little deposition. However, it did produce sig-
nificant pitting in the steel surface as shown in Figure 24, Figure 25and Figure 26. The

phenomenon of rings formed around pits is also clearly evident. The figures show that
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Fig~ure 19. Steel surface slioising bulk copper deposition. (6.4X)( i10 )

Figure 20. Copper deposition on a steel surface shoiing a cor relation bet'seeni

greater pitting density v 'ut i greater copper dlep~osition. (20ON

( i5011m)

34



Figure 21. Ring structure: found surrounding a pit at the edge of thle dense

copper deposition region in Figure 19.(20OX) ( r Onz)

rigiiie 22. Second ring structure: roun~d surrounding a pit at thle edge of thle
Jcn~e copper deposition region in Figture 1 9.( 20()N) ( - tm



Figure 23. Circular copper deposits: found outside of the region of dense depo-

sition in Fi(-zure 19. (500X) (i 2.unt)

TI.

F'igure 24. Inter ferenice deposition pattern: f'ound on a polished steel surface

subjec.ted to a copper pkisma.( 2uON ) .1 50 un)
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Figure 25. Seconid interference deposition pattern: found on a polished steel Sur-

%'ce Subjected to a copper plasma.(209X)( iI 50111n

041 47

Ti~ :46,r

Fiue 26. T1he egaion shomn in figure 25 at 500\. ( :1



these rings form interference patterns when their central pits are close enough for them

to interact. Figure 26 is a higher magnification view of Figure 25 and shows that these

ring interference patterns are made up of many small dots of deposition.

Further experiments did not yield such significant deposition as in Figure 19,
however two deposition patterns were always evident: ring deposition and simple de-

posits. Observations with the optical microscope reveal that every deposit is surrounded

by a light to dark blue film (as mentioned previously). This blue film is represented on

these black-and-white photographs as the dark region surrounding the deposits. The

data for Figures 27 through 33 are given in Table 1. In each shot the target was hit 60

times (at I Hz) by the C02 laser. The results of shot C were especially interesting. The

surrounding blue regions of the deposits spread out in comet like tails with all of their

heads directed towards the same central region.

Table 1. DATA FOR SHOTS A THROUGH D.
Shot Vacuum h (cm) Average

(10-: numl-Ig) pulse en-
ergy (J)

A 2.3 1.8+0.1 21.9
B 2.8 1.8+0.1 19.9
C 3.8 1.3 0.1 20.6
D 3.5 1.3 - 0.1 21.6

These experiments show that the bulk of the material ejected from the laser spot

is emitted normal to the target surface. While some of this material expands into the

vacuum most of it comes out in jets. Pitting on the steel surface indicates that this ma-

terial contains plasma but it also contains a significant amount of neutral metal vapors.

The wave structure is most likely caused by an oscillation in the incoming material which

was generated by the central arc. Should this be the case, then the question of whether

the rings are formed by an outward propagating disturbance produced by a single arc

or an oscillating arc arises. Also, if the velocity of these waves could be measured or

calculated, then the period of the unipolar arc could be directly measured from the pe-

riod of the rings. This would have to be taken tip in later study.
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Figure 27. Shot A: Centers are copper deposits surrounded by yellow, and light

and dark bIlue films onl a copper back grouInd.(20OX)(i'5p)

Figure 28. Shot A: The center is a copper deposit. The copper rings are oil a

bIlue back(-Iround.( 20UX)( :: 50,m)



Figure 29. Shot B: This shows copper rings on a dark bluc background (dark

region). (2QQX)( 5iSpnz)

Figure 30. Shot C: The center towar ds w'hidih the other deposits in this shot
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Figure 31. Shot C: Ring deposition with the background pointing towards rig-

ure 30.(2(X)NX)( -i50,gm)

Figure 32. Shot C: Ring deposition with its background pointing towards

Figure 30.(50N)( 'j0.2mm)



Figure 33. Shot D: These are simple copper deposits with the usual blue sur-

rounding film, the center is out of focus and steeply raised. (200X)
( 50gin)

B. THIN FILMS AND THE UNIPOLAR ARC

Placine a thin film of copper onto a highly polished stainless steel target provides

information on how the same unipolar arc afthcts the two different metals. This section

begins bx providing data from these experiments further enforcing the argument that the

primary surface damage mechanism is simply local heating b the arc current. SpeLif'-

ically. the unipolar arc acts to melt and vaporize the surface in an isolated region. A

detailed theoretical description of the dynamics of this process is gien in Chapter V.

Lastly. this information, along with some basic thermodynamics. is used to estimate the

arc current. The last section provides preliminary data for cstablishing a correlation

between a pit's depth and its width.

1. Arc damage - a heating phenomenon

To study the effect of the same laser shot. and the same unipolar arc. on two

different materials a 0.37 micron copper film was placed o% er half of a ty pe 304 stainless

steel target. The target had been polished to the degree obtainable b% u.(15 nucron

Alumina. This target was shot in a vacuum of 3.5 x 10 S nmllg. Optical and scanning

electron iiLro.cope anly scs of damage in the laser spot recealed that while the copper
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film was penetrated. the copper appeared to have been pushed aside (Figure 34 to Fig-

ure 37). This was even more apparent in the damaged areas outside of the laser spot.

Figurc 38 and Figure 39 show areas where the copper film was melted and somehow

pulled radially outwards with no damage to the underl% ing steel. They also show regions

where the underlying steel also suffered pitting yet the molten steel did not travel so far

as did the molten copper.

These results are what would be expected given that the dynamics of the process

is an electric arc joule heating and melting the material in a small region. This molten

material then being acted upon by a radial force. The melting points of copper and iron

are lOS30°C and 1535°C respectively. Thus, for a given amount of heat placed over a

short period of time. the copper would be expected to melt sooner and remain molten

longer as it passed over a surflace than would the iron (steel).

2. Calculation of Unipolar Arc Current

Assuming that the driving mechanism of the surface dynamics is produced by
joule heating. then a rough calculation of the arc current is possible. This section will

use some basic thermodynanics to develop a formula for this arc current. Since the
currents of.the unipolar arcs are most likely different as a function of time, this formula

Figure 34. Optical microscope image of a focused laser spot: steel target overlayed
with a 0.37 micron copper film.(500X) (single shot)( . 20pm)

d1



Figure 35. SENI image of laser spot.: same targct as Figure 34.(1620X)
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Figure 37. Distribution of copper in Figure 35.

Figure 38. Optical microscope image of damage outside the laser spot: steel targct

overlayed with a 0.37 micron copper film. (5UON) ( i: 20pun)
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Figure 39. Optical microscope image of further damage outside the laser

spot: steel target overlayed with a 0.37 micron copper film. (500X)

( ' 20Mim)

is only meant to provide an order of magnitude estimate of the average arc current. In

light of this fact, several assumptions are made to simplify the calculations and the for-

mula. Lastly, a calculation will be performed using an actual pit.

Assuming that the pit is cylindrical with radius r and depth h. then the mass in

the pit is

nt = p rr2 h (38)

where p is the density (8.95g/cm3 for copper). The amount of heat necessary to melt all

of this and to vaporize one-quarter of it is

Q, = m(CsAT s+Lf+CA 7+0.25L.). (39)

46



Where AT = temperature change from initial temperature to melting point
(10630C for copper initially at 20"C)

AT, = temperature change from melting point to vaporization point
Cs m heat capacity for the solid (.092cal/g*C for copper)
C, = heat capacity for the liquid (0.1 l8cal/g*C for copper)
Lf = latent heat of fusion (49 cal,'g for copper )
L, = latent heat of vaporization (1250 cal/g for copper).

Here the heat capacities are assumed to be constant over their respective regions. This

assumption is fairly accurate over the regions given and should not be a significant

source of error. Another assumption is that one-quarter of the material in the pit is

vaporized. This is simply a very rough estimate which comes from observations as in

Figure 39 and Figure 19. Figure 39 shows that a lot of material is going into the for-

mation of the rim, whereas Figure 19 appears to show that a significant portion of the

material in the pit is ejected. This assumption may be an order of magnitude source of

error since the energy required to provide the latent of vaporization for all of the copper

in the pit is eight times that required to heat it to its boiling point

(1118"C in a vacuum of 7.6 x 10-' mmHg). The factor of one-quarter was chosen to

account for both the observed bulk material emission and the observed rim (which in-

dicates that most of the material remained). The actual value of this factor is unknown.

In joule heating the power, P, provided by the arc current, I, is given by

P.=12R. {411

R is the resistance over the current path and is given by

R Pr h (42)

where p, is the resistivity (1.7 x 10-IL2 m i for copper). For simplicity the resistivity is

assumed constant.

Since power in this case is the rate of production of energy, and heat, Qh, is en-

ergy, then

Qh = Pt
= 12Rt. (43)
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Here t is the lifetime of the arc. It will be assumed that the current is constant

throughout its lifetime and zero at any other time. A further assumption is that all of

the heat produced by the arc goes into melting and vaporizing the metal in the pit. Of

all of the assumptions in this derivation this is the one most subject to question. Cop-

per's high thermal conductivity assures that heat will be transmitted into the surrounding

metal. Taking this heat loss into account would severely complicate this dtrivation and

so that must be left for further research.

Finally, combining equations (42) and (43) provides the formula for the arc

current

i r2 Qh {44)
hpr t L

The current density is then simply

I

7rr2

Qh  
{45)

prr2ht

These equations should be fairly accurate for any arc in any material.

Figure 40 displays the unipolar arc pit which will be used in the following cal-

culation of an arc current. The film thickness, h, is 1.89 microns, the pit radius, r, is 3.0

microns. Given these parameters and making the assumption that the arc lifetime is one

microsecond the heat required is

Qh,:,9.32 x 10- 7 J. {46)

The arc current is then

P28.6 Amps. {47)

This value is very near the current assumed by Schwirzke [Ref. 4, p. 611] and that re-

quired by Wieckert [Ref. 14, p.500 -providing further confirmation to their theories. The

current density is

j-l.01 x l08 Amps/cm2. {48)
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Figure 40. Calculation data: SEM photograph of unipolar arc pit fully penetrat-

ing a 1.89 micron copper film. (5000X)

This value is an order of magnitude below that required by Weickert [Ref. 14, p.5001.

This is most likely due to the copper having moved radially away firom the central arc

as has been observed in the previous section. i.e. a smaller cross section of the arc. This

motion has the effect of increasing the value of the current density, however, since the

amount of material involved in the calculation of the heat input is the same, the value

of the arc current remains the same.

This method of finding the arc current will be much more accurate when some

of the assumptions are removed. In particular, a good value for the arc lifetime must

be found. More detail in this calculation is meaningless without the lifetime.

3. Pit depth experiment

The purpose of this experiment was to find if there is a relationship between a

pit's depth and its diameter. To accomplish this copper films of thicknesses varying from

one to ten microns were placed onto polished type 304 stainless steel targets. These

targets were then illuminated with a single focused pulse of the C02 laser under roughly

the same con'ditions.
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Data was acquired using the scanning electron microscope. Its elemental anal-

ysis function was used to scan for sharp differences in element concentration over the

pit. An example of a pit which did penetrate fully through the film is given in

Figure 41, Figure 42 and Figure 43. An example which demonstrates a pit which did

not fully penetrate is given by Figure 44 and Figure 45. The elemental analysis function

will penetrate approximately one micron into the surface. This is not considered to be

a significant source of error since it is changes in the elemental concentrations which are

looked for. The fact that all analyzed pits either showed a sharp change in concentration

or no apparent change at all further minizes this as a source of error.

Figure 46 displays the results of this experiment. Raw data is provided in Ap-

pendix A. The data show that there is no correlation between pit depth and diameter

for pitting on the copper films. This conclusion comes from the fact that in many cases

pits with relatively smaller diameter penetrated the film whereas other much larger ones

did not. This conclusion may be specific to pitting on copper films due to the sharp

differences between the shapes ot these pits and those previously investigated on un-

coated staihless steel. There is also dramatic differences between the pits on the same

target. Figure 41, Figure 44, Figure 47 and Figure 48 are just a few examples. The

large range in error in the power densities in Appendix A is due to the measurements

of the small area of the laser spot.

Figure 46 also shows that the maximum depth for pitting was less than 10

microns. No pit was found which fully penetrated the 9.88 micron film. This includes

pits inside the laser spot. Difficulty in acquiring time on the SEM prevented further in-

vestigation.
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Figure 41. Example pit iihich fully' penetrated the copper filmn. (5080X)

Figure 42. Iron distribution of Figure 41.
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Figure 43 Copper distribution of Figure 41.

Figure 44. ENampie pit iihich does not penetrate the copper [jima

52



- 7- -

ilk I 4

0 4s

J'6 !u

Figue 4. Ion dstrbuton ii Fgur 44

AO 6 ,1

oil i 1 t '-4 1 .53



40

30 + ad penarde

+20 0
C. +

+

4"4

30 - 0 I" eeae

1014 43 + +3

C3 . I +

0+ .+

0 +

1 39

film thicknss (Wm)
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Figure 47. Examiple of Unipolar Are pit diversity. (1320X)

Figure 48. Example of Unipolar Are pit div ersity. (87 lOX)



V. THE SURFACE DYNAMICS OF UNIPOLAR ARCING

The background theory combined with the experimental results provide an indi.
cation of the dynamics involved in the surface interaction. Simply put, the surface sees
a high concentration of ions producing an intense electric field over a small region. This
generates the emission of a high electron current which heats the surface producing
melting and vaporization of material in that region. Indeed, this is quite similar to arc
welding and so much of the physics of these two processes must be similar. This chapter
will exploit that link. It begins with a theoretical description of the generation of the
pit or keyhole as it is referred to in arc welding, and concludes with a theory on the
formation of the rim. Much of the theory presented is specific to the macroscopic
process of arc welding and is only qualitatively related to the microscopic process of
unipolar arcing. Further research will be necessary to make it specific to unipolar arcing.

A. PIT FORMATION
As mentioned in chapter II, the cathode spot is both emitting a high current of

electrons and absorbing a large ion flux. Heat is mostly provided by the electron current
with a small contribution from the energy of the ions (see Appendix B). The ion energy
comes from their thermal energy, the energy gained in their acceleration through the
cathode potential drop and their recombination energy. This recombination energy is
approximately equal to the material's ionization energy. All this energy serves to heat
the small region of the cathode spot. Heating of the cathode spot gives rise to melting,
vaporization and thermal electron emission.

As described by Quigley [Ref. 15], in order for a pit to form the power density must
be high enough for the combined effects of the ion pressure and the pressure caused by
the vaporization of the material to produce a depression in the pool of molten liquid.
Once formed the depth and shape of the pit will be determined by the forces involved,
that is, the effects of those forces which tend to open the pit and those which tend to
close it (see Figure 49).

1. Forces which tend to open a pit
The forces which tend to open and maintain the pit are the ion pressure (p),

vapor pressure (p,) and the recoil pressure (p,). In the laser-target interaction the radi-
ation pressure would also have to be considered, but this will be neglected here since the
plasma- surface interaction is all that is being described.
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Figure 49. Forces involved In the formation of the pit. [Ref. 15, p.3 1 11

The ion pressure comes from the momentum imparted to surface by the impact

of the ions. It is given by

"Pb = 2 (49)

where p, is the ion density and v is their velocity. Schwirzke [Ref., 4] gives a plasma

density of 10"cm-3 when one monolayer of atoms has been released from the surface.

Schwirzke also stated an electron temperature of 18 eV. To find the upper limit on the

beam pressure it is assumed that all of the ions enter into the sheath one debye length

from the surface with negligible energy. The ions will be accelerated through the entirc

sheath potential. The velocity is then given by

v = 2eVf (0
nil. t0

where in, is the ion mass. With p = n,, the beam pressure becomes
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1:"
Pb =fT pv

I 2eVfm , (51)

=neVf

= 1.45 x 10s N/m 2.

This is the upper bound on the beam pressure assuming a plasma density provided by

the partial ionization of one monolayer of atoms. Currently the value of the plasma

density above the pit during arcing is unknown.

The vapor pressure comes from the material vaporized inside of the pit. This

pressure is dependent upon the temperature. Calculations of the temperature and thus
the vapor pressure distribution inside of the pit are complicated due to the dynamic na-

ture of that environment. The vapor pressures as a function of temperature for alumi-

num, copper and iron are given in Figure 50. Note the rapid decrease with temperature.

Lastly, the recoil pressure is due to the vapors leaving the surface with a finite
velocity and hence imparting a recoil pressure onto the liquid surface. According to

Quigley [Ref. 15, p.317] the recoil pressure is given by

Fr w2(52)
2 2Pr- A2p0Q2  {2

where W/A is the power density, p, is the vapor density and Q is the energy required to

vaporize one kilogram of the material. From the calculation of ti, , arc current in

chapter IV W/A is 3.3 x 1011 W/m2 and Q is 1.94 x 1063/kg. The vapor density can be

found by taking the mass of the vapor ejected and dividing by its volume. Assuming that

the surface temperature is 2200 K, then the velocity of the vapors is 930 m/s. If the arc

lasts for one microsecond the vapors will travel 9.3 x 10-4 m. Taking data from the pit

used for the arc current calculation in chapte' IV finds a vapor density of 4.49kg/in 3.

The recoil pressure is then

7 2Pr = 6.4 4 x 10 N/m. (53)

The values presented here are only rough estimations accurate to only an order

of magnitude. Nonetheless, it is clear that the recoil pressure is a significant force

tending to create the pit in the liquified surface. The contribution of the ions depends
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Figure 50. Vapor pressure versus temperature for Aluninnum, Copper and Iron.

[Ref. 15, p.32].

on their density. The ion density would have to be two orders of magnitude higher for

the ion pressure to become comparable with the recoil pressure.

2. Forces which tend to close a pit

The forces which will act to close a pit are gravity and surface tension. The

gravitational pressure, pgh, at any point is simply equal to the weight of the metal above

it. In Figure 49 h is the depth at any particular point in-the pit, and d is the maximum

pit depth. This force should not be significant in pits formed by unipolar arcing.

Surface tension can be thought of as the force which acts to minimize the sur-

face area of a liquid. In the case of pitting the surface tension force acts against the ion,

vapor and recoil pressure forces as shown in Figure 49. Assuming that the surface at

the bottom of the pit is a hemisphere, then the surface tension pressure is
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2yPy r (54)

where y is the surface tension coefficient and r is the radius of the hemisphere. The

surface tension coefficient for copper varies from 1.03 to 1.15 N/m depending on the

temperature (see Figure 51). Assuming a value of 1.1 NN/m and a pit radius of one

micron gives a surface tension pressure of

py = 2.2 x 106 Ntm2. (55)

While this value is much greater that either the ion pressure or the vapor pressure, it is

much less than the recoil pressure.

3. Overview of the dynamics of pit formation

The process of pit formation begins with the concentration of an electric field

around a 'whisker.' This causes increased ion bombardment of the whisker, heating it

and increasing the emission of adsorbed gases and other neutral particles. Collisions
with electrons ionize a small percentage (approximately 2%) of these neutrals which

causes a dramatic rise over the background plasma density (about 4000X) above the

whisker [Ref. 4]. This rise in plasma density rapidly reduces the debye length with a

subsequent increase in the electric field above the surface. When the electric field be-

comes high enough arcing occurs. This is followed by a rapid temperature rise in the

cathode spot accompanied by melting and vaporization of the surface. This

vaporization creates a recoil pressure which overcomes the surface tension pressure and

pushes a pit into the surface. As long as the plasma density above the cathode spot re-

mains high the pit will deepen. Since it is the high electron temperature along with the

high local neutral concentration which generates the high local plasma density, the

plasma density in the pit will decrease with pit depth. This is due to the plasma in the

pit becoming isolated from the bulk plasma. When the electron concentration and en-

ergy in the pit become sufficiently depleted such that ionization of neutras is signif-

icantly reduced, then the plasma density will drop. The subsequent reduction in the

debye length lowers the electric field past the point where arcing stops.

Andrews and Atthey [Ref. 17] give an excellent mathematical description of the

generation of a pit, or 'keyhole,' by a continuous high power laser beam. Their pit is,

however, on the order of a millimeter in diameter and the heat input is from the laser

as it drills the hole. Further research may be able to modify their solution to fit the

physics of uinipolar arcing. Their solutions to the hole profiles for different power den-
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Figure 51. Surface tension coefficient versus temperature for copper. [Ref. 16]

sities is shown in Figure 52. In this graph 'a' represents the beam radius. Plots A

through E represent increasing power density.

B. RIM FORMATION

Two forces are responsible for tile formation of the rim: the ejection of the vapor

from the pit and surface tension. The vapor ejection serves to remove the liquid onl the

sides of the pit and pushes it radially outwards as it exits from the pit. The motion of

the molten rim away from the pit will be shown to most likely be due to a gradicnt in

the surface tension,

1. Dynamics due to the ejected vapor

The vapor produced in the pit exerts forces on the walls of the pit as shown in

Figure 49. The rushing vapor produces a shear stress along the wall of the pit. Since

that wall is a liquid-vapor interface the shear stress and tile pressure gradient produce

vertical flow which brings the liquid out of the pit.i At the exit of the pit the radial va-

por pressure gradient pushes the liquid radially outwards to form a small rim around tile

pit.

1 The liquid is also removed from the pit by the action of the recoil pressure displacing molten
metal in the pit center.
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Figure 52. Example pit profiles.: equilibrium hole profiles calculated to be
produced by a continuous high power laser beam whose diameter is on
the order of a millimeter.[Ref. 171

The vertical flow also ,ransports heat. This heat transport acts to produce more
melting on the surface which explains the downward slope f'und between the rim and
the pit (Figure 53 and Figure 54).
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*Figure 53. Unipolar arc craters on stainless steel target: (700X with SEIM)IRecf

Figure 54. Uiuipolar arc craters on stainless steel target: (cathode holes are ap-
proximately 0.7 ticroa diameter) [Ref. 1S].
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2. Dynamics due to surface tension

Surface tension also acts to transport the surface liquid radially away from the

region of the pit. How it does this depends upon whether or not the pit fully penetrated

the material, in this case the copper film. If the pit fully penetrates it will be shown that

the surface tension acts to reduce the surface area. In so doing the rim expands radially

until the heat contained in the liquid is no longer sufficient to liquify more of the copper

film. Two arguments will be given for the case where the arc does not fully penetrate

the material of the film. The argument by Lancaster [Ref. 15, p. 113] shows that when

the surface tension decreases with temperature it will induce an outward radial flow on

the surface of the liquid. Unfortunately, typographical errors in the reference produced

a break in his argument. Attempts to resolve this produce an argument from which

outward radial flow is produced by a surface tension which increases with temperature.

Both arguments will be given concurrently.

a. Full fin penetration

Since the pit depth is generally on the order of a few microns, then a film

of that thickness or less on a surface will be easily penetrated by a unipolar arc. When

this occurs the surface tension of the liquid acts to reduce its surface area. It'will have

a semicircular cross section and have a contact angle, 0, with the underlying surface

(Figure 55). This contact angle is given by

cos 0- YVAR {56)
VA

where y8, YA and YA are the surface tensions of the underlying solid surface, the liquid

film and the surface-liquid interface respectively (Figure 56).
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The surface tension produces an outward radial force on the filn
surlace(Figure 55). As heat is transferred from the liquid to the solid film more of the
solid film will undergo the transition'to liquid and the 'rim' will progress radially away
.from its starting point. This will continue until there is no longer sufficient heat present

for the transition to continue. At this point the heat will continue to flow out of the

liquid and it will solidify in place while maintaining its shape.
While this explains the damage found in Figure 39 it does not completely

explain that found in Figure 38. The large size of this damage indicates that it could

not have been caused by a single arc in a small area. Thus either several arcs produced
this damage or the arc followed the rim as it receded. The mechanism for the arc lWl-

lowing the receding rim may come from the reduced vaporization temperature for copper

in a vacuum. The melting point for copper is 1083 *C. Depending on the vapor prcs-
sure, its boiling point can be very near its melting point. At a pressure of 7.6 x 10-4

mmHg the boiling point is 1118 °C. The melting point for the iron in the stainless steel

is 1535 °C, Thus the inner corner of the copper rim could have become the source of
the vapors producing the plasma density needed for arcing. Thus the arc following the

rim as it recedes may have been the heat source which generated the damage.
b. Flow induced by a suirace tension gradient

The following argument deals with steady flow conditions in a weld pool.
While the process of unipolar arcing is on a much smaller scale and is inherently dy-
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Figure 56. Surface tension forces on a liquid drop In contact with a surface. [Ref.

15, p.35]

namic much of the same physics should be occurring. Thus this argument is not meant

to present a full description of a mechanism for liquid flow during unipolar arcing, rather

it is only to present a 'possible"mechanism for this flow. More research is necessary to

determine the validity of this argument in relation to the unipolar arc. Most of the foi-

lowing argument comes directly from- Ref. 15.

The general solution for-flow generated in a conducting fluid by an electric

current which diverges from a point source on the surface (Figure 57) was found by

Lundquist [Ref. 191. Lancaster (Ref. 15, p.1131 applied this to a point source at the or-

igin entering a semi-infinite liquid whose surface is on the plane 0 = 7E/2. The stream

function, in spherical coordinates, for this case is given by

T(r,).) -- P 12r [a).2 +b).+c+(l ).) ln(l +).)] (57)4n2 it

where /.,, = magne ic permeability
I = electric current
= viscosity

A = cos 0

and a, b and c are constants. The boundary conditions for this problem require that

V(r,O) -0 (59)
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'F(r,l)- 0. (60)

e=o

40

Figure .57. The current I enters at the origin of the coordinate system aid flows
radially into a conducting fluid. [Ref. 19, p. 901

When the system is in steady state the net shear stress at the surface must

be zero, Hence there is a balance between'the stress due to the flow, p,O, and that due

to the surface tension. Thus

=p ar 1 .'0 = 0. {61)

Lancaster then solves for the shear stress with the result that

2 Poe ___ ;2_____________2a__
Pre 4n22 2 1a +b).+(l+).)ln(l+).)_I)+A {62)

Attempts to reproduce this result have failed. Calculations shown in Appendix C show

the shear stress to be given by

Po 2 22aCPro 2 [a+b).+(+A) ln(+).)] (Ir

The difference lies in the numerator term under the square root sign in equation (61).

Equation (62) shows that only the 1-).2 term in the numerator is under the square root.

This is also the only term multiplied with the 2a+l/l+)., and the sign in front of the
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f is plus in equation (62) while in equation (61) it is minus. It is most likely that

typographical errors are the cause of much of the problem since for ) = 0 equation (61)

yields a complex value. However, when Lancaster combines equation (60) with equation

(61) he gets

--- 12 (2a+l)+ -- -(64)
41rr or

so that

aL-l[,2 (65)

Similarly, combining equation (60) with equation (62) gives

o +1 I {66}

where the subscripts L and D will refer to the different values found by Lancaster and

Downs respectively.

The first boundary condition requires that c=0, the second requires that

b - -a-2 In 2. The respective stream functions then become

_ + ( l +/.T~ 2 [= UO 2 _,; 1"')± or -l1-4lIn24Y AO1 o (67)

n 2 2 av 42r2 Oy

41D=-or + 1)).2+. or +1-41In 247r 2 2 Po J 2\ o2 {

+(I+.) ln(l+.)].

In spherical polar coordinates the radial velocity is given by

I 8'1'-_ 1 69
2 C (69)

= r2 sinO 80 r2 8 2
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so that the velocities at the surface are

*VLI= .o ---- 2 In 2(l - or (70)
4n 2 qr 2 '01

.I2 /32n 
2r2

VrD o= P-2 In 2+ o ). (71)

In the absence of a surface tension gradient both cases yield a radial velocity

given by

EVr)..o ( 3-2 In 2) {72)
4n 2 ir 2

and the flow induced by the current is radially inwards on the surface, The physical

significance between these arguments comes when there is a gradient in the surface ten-

sion over the surface. Lancaster finds that the flow is reversed, i.e. flow is radially out-

wards, if the gradient in surface tension is finite and positive such that

2r2 r2 aY
Or > 0.1137 - 2 In 2. (73)

Calculations shown thus far reveal that flow will be reversed only if the gradient in sur-

face tension is finite and negative such that

2r 2r2 07
Or < -0.1137. (74)

Given a point source of heat at the source where Q, is the power of the source, C, the

specific heat and p the density, then the temperature distribution [Ref. 151 is

T 4pCS .r {75)

where o. is thethermal diffusivity. The temperature gradient is then
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dT Q Qs (76)
dr 4npCvPr

If V is the power in volts, then Q, = VI and with

8Y 4y dT (77)
Jr 8T dr

then

2n2 a V ay
6r aT-- (78)JUoI2  2pCPaoCPI'

Lancaster's requirement for outward radial flow then becomes

8yrv 0- -1
8T <-0.1137 (79}

2pCpcao.I

whereas calculations show the requirement to be

8y
aT >0.1137. (80)

2pCp a(ol

The surface tension for most pure elements decreases with increasing tem-
perature, however small amounts of surface active elements such as oxygen and sulphur
significantly reduce the surface tension (Figure 58 and Figure 59). As a function of

temperature, high enough concentrations can lead to an increasing surface tension with
temperature. Also, the change in surface tension with temperature of copper is positive
at lower temperatures and negative at higher temperatures as shown in Figure 51. i'hus
either solution may generate outward radial flow.

Lancaster also uses figures from an article by Matsunawa [Ref. 20]

(Figure 60 and Figure 61 to prove his case. However, if Matsunawa is following the

sign convention for flow in terms- of a change in the stream function (Figure 62 on page
73) then Figure 60and Figure 61 prove just the opposite.

c,'figref ref/figref page = no ref,'**
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(a) Velocity distribution ( b) Stream lines

72.



* OP

*90.9

0.0

p.11 8 ..

0lw - -

0:01

(b)

Figure 62. Tigecvenydsbtion , slontermlns ofad changers int1 ramg fltow.
[Refh 21 pstv rdin2fsrac eso wt eprt]e~f 5

P.3



VI. CONCLUSIONS

This research has provided a broad overview of the dynamics of unipolar arcing on

the surface. It was shown that a significant amount of material is ejected during arcing,

the bulk of which is ejected normal to the surface. This being independent of the inci-

dence angle of the laser implies that it is the plasma produced by the laser pulse that

caused the target damage. Ring structures found when the ejected material deposits on

another surface indicates that the arcing oscillates and/or has a more complex structure

than previously considered. Experiments also revealed no apparent connection between

pit depth and diameter for the copper films.

Experiments using thin films imply that damage increases as melting and boiling

points decrease, however, this has not been rigorously shown. Other parameters may

have significant contributions as well. The role of surface tension during arcs which fully

penetrate the film is clear. By reducing the surface area it produces a rim which expands

radially. Radial expansion will continue so long as the molten metal contains sufficient

heat to liquify the adjacent film.

In investigating the role of surface tension an apparent similarity between unipolar

arcing and arc welding was discovered. Exploiting this similarity has revealed a possible

explaination of the dynamics of pit formation. The primary force generating.the pit

appears to be the recoil pressure caused by the evaporating surface. This acts against

the surface tension of the molten liquid to push a pit in the metal. Molten metal is re-

moved from the walls of the pit by the action of the vapors as they rush out. The rim

appears to be formed by the combined forces of the expanding gases (as they leave the

pit) and radial motion caused by a. gradient in the surface tension. It must be empha-

sized that this theory is only preliminary. There are many differences between unipolar

arcing and arc welding. These may invalidate much of this theory.

Clearly, further research into the surface dynamics is required. The fruits of this

research will provide better choices of materials for Tokamaks, spacecraft and any other

devices which will come into contact with a plasma. Specifically, the following areas

need to be further investigated:

a how a material's melting and boiling points affect damage and what role its
conductivity plays;

* the cause(s) of the ring deposition patterns;
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* many of the assumptions need to be removed and the theory made specific to
Unipolar Arcing.
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APPENDIX A. RAW DATA FROM PIT DEPTH VERSUS DIAMETER

EXPERIMENTS

Table 2. DATA FOR PITS WHICH DID NOT
PENETRATE THE COPPER FILM.

film thick- pit diam- vacuum laser pulse
ness (am) eter (pim) (10-5 mmHg) energy (J)

1.13 0.3 + 0.1 3.2
1.89 1.3 - 0.2 2.4 15.0
1.89 3.4 + 0.5 2.4 15.0
3.03 17.9 - 1.5 2.3 11.7
3.03 7.2 + 0.2 2.3 11.7
3.03 16.9 + 1.5 2.3 11.7
3.03 1.6 ± 0.5 2.3 11.7
3.03 0.9 - 0.3 2.3 11.7
5.0 12.6 + 0.5 2.3 11.9
5.0 9.3 + 1.2 2.3 11.9
5.0 10.3 + 1.4 2.3 11.9
5.0 5.9 - 0.4 2.3 11.9

5.45 7.6 - 0.3 2.3 15.8
9.88 13.6 - 0.5 2.0 15.7
9.88 9.5 - 1.0 2.0 15.7
9.88 33.3 -- 5.0 2.0 15.7
9.88 9.3 + 0.5 2.0 15.7
9.88 10.5 - 1.5 2.3 12.1
9.88 15.6 + 1.0 2.3 12.1
9.88 27..0 + 2.0 2.3 12.1
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Table 3. DATA FOR PITS WHICH PENETRATED
THE COPPER FILM.

film thick- pit diam- vacuum laser pulse
ness (pni) eter (um) (10-s nmHg) energy (J)

1.05 9.9 + 1.7 2.4 12.2
1.13 1.0 0.2 3.2 ....

1.89 5.5 + 0.5 2.4 15.0
1.89 9.04+ 0.5 2.4 15.0
1.94 4.3 ± 0.3 2.3 15.0
3.03 17.0 -- 3.0 2.3 11.7
3.03 3.7+ 1.0 2.3 11.7
3.47 13.4 + 0.7 2.4 15.8
5.0 3.2 0.5 2.3 11.9

5.45 1.9 + 0.5 2.3 15.8
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APPENDIX B. ION ENERGY CONTRIBUTION

The purpose of this appendix is to provide some good estimates of the energy con-
tributed by the ions. The ions will contribute the energy they release as they combine
with one of the surface electrons (hereafter referred to as recombination energy) and the
kinetic energy they acquire as they traverse the sheath. It will be shown that the re-
combination energy is insignificant, whereas the kinetic energy is significant. For sim-
plicity, throughout the following arguments it will be assumed that only the latent heat
of vaporization is needed to vaporize the material. The ions must be able to provide this
amount of energy if they are to reproduce their numbers.

A. RECOMBINATION ENERGY CONTRIBUTION
Kittel [Ref. 22, p.53] defines the cohesive energy, E,, as "the energy that must be

added to the crystal to separate its components into neutral free atoms at rest, at infinite
separation, with the same electronic configuration." For the purposes of the following
argument the cohesive energy will be assumed to be the energy needed to vaporize the
crystal. For copper this energy is

EC = 3.49 eV/atom. (81}

The recombination energy provided by the ions will be approximately equal to the ma-
terial's ionization energy. For copper the recombination energy, E,, is then

E, = 7.72 eV/ion. (82)

Thus the fraction of neutrals released that must be ionized so that the same number of
neutrals can be vaporized by the recombination energy alone is

EC  3.49 eV/atom
El 7.72 eV1'ion = 0.45 ions, atom {83)

which is quite high.
Since the majority of the ions (generated from the ejected neutrals) which return to

the pit surface are produced in the sheath, then for simplicity it will be assumed that all
of those ions are produced in the sheath. The number of neutrals which are ionized in
the sheath is proportional to the ratio of the debye length, 2 , and the electron mean free
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path, ).,. The debye length was defined in chapter II, the electron mean free path is.given

by

;= n~ 1  {84)

where no is the neutral particle density and a, is their ionization cross section

(;l0- m2 ). Given that each monolayer of atoms vaporized must undergo enough

ionizations such that the ions produced deliver sufficient energy to the cathode surface

to release another monolayer of atoms, then the neutral particle density can be taken to

be

n = p {85)

where p, is the particle density of one monolayer of the surface

(.2.16 x 101 /1 2 for copper). The fraction of neutrals which become ionized in the

sheath is then

nt 1.D
t ° OF = / .e

= ).If )at{86)

\ /'

= PpaI

.022.

Thus recombination only provides .022,.45= .049=4.9% of the energy needed. This

does not take into a ;count the ionizations produced by the ezctron currelt. This would

entail-a signifcant complication to this calculation and must be leIt for furthel study.

B. KINETIC ENERGY CONTRIBUTION
To find' the maximua possible contribution of the kinetic energy it is asiumed that

the io,:,s which gp to the surface are produced one debye lengts rrom the surfhce.

Schwirzke [Ref. 4] found that the vast majority of 'he ions generating the short debye

ength and thus UipPolar Arciip) come from neutrals ejected from-..he surface. Thus

it will be assumed that-all of the ions- are produced from neutrals evaporated from the

surface. The kinetic eneiy that ihey provide upon stri.kingp-fi surface is theli
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KE = MV2. (87)
2

If the initial velocity is assumed to be negligible, then the ion velocity is given by

v = at {88)

where a is the acceleration and t is the time for the ion to traverse the sheath. The ac-

celeration is given by

eE eVfa= n---i = )- .{89)

Given that the surface is at x= 0, then the time, t, is

t= /2;-. {90)

The maximum kinetic energy provided per ion is then

KE -eVf

S U In(2-m ) {91)

For an electron temperature of 18 eV, as given by Schwirzke [Ref. 4 ], the kinetic energy

of copper ions is

KE = 88.4 eV/ion. {92)

The fraction of the required cohesive energy which is provided by the maximum kinetic

energy of the ions is then

NIKE,
AE 0.557. (93)

N,:N,, is the ratio between the numbers of ions and neutrals as found in the previous

section (0.022). This estimates a significant contribution.

Ions will be produced throughout the sheath, thus the actual contribution of their

kinetic energy will be less than that given above. First it will be assumed that the ions

are produced in a linear fashion such that one ion will be produced over each interval

.DN,, where A" represents the total number of ions produced. It is also assumed that
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the potential increases linearly with distance from the surface. The kinetic energy con-

tribution from the ion produced in the jth interval from the surface is then

KEj = KEmax A,. (94)

The total kinetic energy contribution from all of the ions is then

KEr= KEmax (95)

If ffx)=j, then

J+J.x)dx > j (96)

so that

2-f + JZx)dx = J ](x)dx (97)

J.1 J I=

The upper bound on the total kinetic energy is then

KEMaX. N"
KE,0 1  = I A1 fl x)dx {98)

K NKE -- KE
- 2 Kmax 2N, max

In the limit as N, becomes large the average kinetic energy contribution per ion becomes

KE[t 1
KEton -  2 ='-'KEmax.  {99)

Thus the ion's kinetic energy provides approximately 27.9% ofrthe total energy required

for vaporization.
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APPENDIX C. DETAILED CALCULATION OF THE SHEAR STRESS

Whenever there is a viscous fluid moving with a nonuniform velocity shear stresses
will be present. These stresses can be considered to act as if their is a frictional force
between the elements of the fluid. This force coming from the 'friction' generated be-
tween adjacent elements moving at different velocities. Figure A-I shows the viscous

stress components in the spherical coordinate system (r,0,0). These components, as
derived by Lancaster [Ref. 15, p.85], are

8VrPrr = -p+2 /"8r

Poo = -p+2 +r +vr)

Poo -- +r sin 1l " +vr sin O+vo cos 0

[ v- + I avo v-0coto "

Po -Po-- F7 a / v+ r 1i 0 ? 1€rPrOPer-[r r rsin a r

On a planar surface defined by 0 = n,2 the stress which acts to counter the surface ten-
sion is p,,. The purpose of this appendix is to calculate this stress compoIetot.

Equation (56) gives the stream function to be

"(r,).) = Poo r [a).2 +b).+c+(I+).) ln(l+).)] (56)47 n2 )1

where . = cos 0. The first boundr' condition

'I'(r,O) = 0 (571

implies that c= 0. In order to calculate the shear stress the velocities in the radial fnd
theta directions are required, these are provided by the stream function as foll.ws:
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Prr

Pro

orr

Figure 63. Components of viscous In the spherical coordinate system. [Ref. 15,
p.851

r' JA(103)
rol2 1~

= r [2a).+b+ mIn~ IA)+ Q
4n- I

r sin 0 dr

r i- 7 r (104)

z: -i P17 -- [a), .(1.-).) ln(1+A)]
4n 2q r

The requ~red& rtial derivatives arc
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8vr 8vr d1.

8O 8). dO

-A- [105)

4n2 r 1

and

. (. = 2 1 [a).2+b)+(+))ln(l+).)] (106)

Pl1cing these equations into the equation for the shear stress yields

A 1 2 2 .22r
Pr I =2 [a).2+b;.+(l+).)ln(l+).)]+4l_). 2a+ ' .
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